-

Working with APIs — Part 1

Working with APIs, Part 1

Two simple ILE RPG programs
show how calling APIs using PLIST

and prototypes differs

by Paul Morris

S A FREELANCE ANA-
lyst/programmer, I've met
many programmers who
have widely different skills
and experience. In working
with these programmers, I've found that
many of them not only lack awareness of
what APIs can do, but they also have a
fear of programming with them. The pur-
pose of this article is to show how easy it
is to use APIs to help overcome that fear.
Here, we examine two versions of a
simple ILE RPG program that calls an
API to see how the two programs differ.
The first program calls an API with a
PLIST, and the second one calls an API
using prototyped calls. In Part 2 of this
article, we'll build a program for a util-
ity that compares the source timestamp
on program objects with that on the
source file and reports differences.

Calling a Program with PLIST
Figure 1 is a program written in a tradi-
tional style with a program call that uses
a PLIST. This example employs an APl to
retrieve an object description, in this case,
of a library. The program is called from
the command line and is passed the
library name as a parameter. If the library
exists, the program returns normally; if
the library doesn’t exist, the program
dumps before failing,

You can also easily step through this
program using the STRDBG (Start
Debug) command, which lets you see the
variables changing. (For more informa-
tion about using the ILE debugger, see
“Using IBM’s ILE Debugger, Part 1,”

wwwiiSeriesNetwork.com

April 2000, wwne.iSeriesNetwork.com,
article ID 6707, and “Using IBM’s ILE
Debugger, Part 27 July 2000, article ID
7520.) Now, let's examine this program
in more detail.

The copy member at A is a system
include file of a data structure used to
control errors. If you don’t have the sys-
tem include files on your system, you can
load them from the installation CDs
(more about error handling in a moment).

At B is another copy member that has

the data structure to which the API returns
data. In fact, more than one data struc-
ture is defined in the copy member, each
showing more data than the first. The
purpose of this is to enable different data
to be returned at different costs (process-
ing overhead). You choose the data struc-
ture you want when you call the API.
(For a list of APIs and their functions,
visit IBM’s Info Center at http://publib
-boulder.ibm.comliseriesivSr2/ic2924/info
lapisfapibtm.)

The API uses the work fields at C.
The *ENTRY PLIST (at D) passes the
name of the library to the program. The
*INZSR subroutine at E initializes the
error structure so that a simple RESET
restores the values.

Because this program is the founda-
tion on which we build the rest of the

FIGURE |
Calling a program with PLIST

H debug

* API copy sources

*

* API error data structure
fcopy QSYSINC/QRPGLESRC,QUSEC

0 * API structure for retrieving object description API

fcopy @SYSINC/QRPGLESRC,QUSROBJD

e * API parameter fields

d BLength s FbOD
d BFormat s 8
d @FilLib 5 20
d 80bjiTyp s 10
d @InLib s 10

* Definitions
w

@) ¢ *Entry Plist

c Parm

alnLib

c Exsr Init

© Exsr Exit

* 1-off initialization

continued on page 36

DECEMBER 2003 iSERIES NEWS 35

B WORKING WITH APIs

utility (which Part 2 will cover), we place
the API call in the subroutine INIT at F
(the reason for this will become clearer
when we look at Figure 2). So, in the

INIT subroutine, we

* reset the error data structure for the
API call

set the length to that of the data struc-
ture that will hold the returned data;
we can specify a shorter length than

the structure, provided the length cov-
ers the fields in the structure we

want to use (if we specify a longer
length, the API may “overflow™ the
actual length of the data structure and
corrupt the storage area where the
program stores its variables)

tell the API which data format we’d
like returned (in this case, we're choos-
ing the first format, 'OBJD0100")
specify the object name and library
as a 20-byte field; this is common in
APIs, and the data must be spaced
out as 10 + 10 with no separators
specify the object type

-

We then call the API and pass it our
chosen data structure, the fields we've
prepared, and the API error structure.
After the call, we test the error structure
to check for errors. If an error exists,
we fail the program by calling *PSSR.

If we were to examine a dump that was
produced by calling the program with an
invalid library (or a library name that’s
not in all uppercase characters), we'd see
that the dara structure we input to the
API — QUSDO0100 — is unchanged (it
has remained blank). The API has set the
bytes available to 26, but the bytes pro-
vided remain at 16 — the difference being
10 bytes, which will hold the substitution
data for the error message CPF9810 (it
holds the name of the invalid library we
requested) if the data structure is long
enough.

Calling APIs with Prototypes

Now, let’s compare the example in Figure
1 with that in Figure 2, which employs
prototyped calls. The prototype RtvObjD
(at A) replaces the PLIST. You'll also see
that 've defined the error data structure

36 ISERIES NEWS DECEMBER 2003

FIGURE | continued

Qusec

Qusbprv = %len(Qusec)

E)r. *Inzsr Begsr
€ Clear
c Eval Qusbavl = @
c Eval
(= Endsr

* jnitfalization

CF) c Init Begsr

Qusec

90

'0BJDO10O"
8InLib + "Qsys’'
'* 18"

Qusdd109
alength
@Format
aFilLib
a0biTyp

Qusec

€ Reset

c Eval BLength =
€ Eval @Format =
c Eval aFillib =
e Eval 20bjiTyp =
c Call 'QUSROBJD'
€ Parm

c Parm

© Parm

-} Parm

] Parm

€ Parm

£ If Qusbavl <> D
€ Exsr *Pssr

c Endif

[} Endsr

* wrap up and go

c Exit Begsr
€ Eval *inlr = *on
c Return
c Endsr

* error routine

*
© *Pssr Begsr
c Dump.
c Endsr "*CANCL'

QUSEC in the program (at B) to replace
the /COPY entry. This lets us set the ini-
tialization with the field definitions rather
than in the C-specs, allowing us to
remove the *INZSR subroutine. Also
note that I've included another field
(QUSMSGDATA) in this data structure
for additional message darta.

The call to the API has now been
replaced with a more meaningful CALLP
for RevObjD (at C), which also uses
expressions in the call. I think you'll agree
that using prototyped calls makes the
program clearer to read. Therefore,
we’ll use prototype calls when we build
the utility in Part 2.

If you call this example with an invalid
library name and examine the dump,
you’'ll notice that within the QUSEC
structure, the additional field QUSMSG
DATA contains the library name. This is
the substitution data for the CPF9810
message ID held in QUSEL

Error Handling in APls

Most of the APIs we're likely to use
daily employ an optional parameter for
controlling errors (e.g., as defined in the
copy source member in Figure 1 at A).
If we omit this parameter and the API
detects an error, it crashes with an
escape message. This means that if your

wwwiiSeriesNetwork.com

e ————

| Fax Automation

\ FIGURE 2

Calling a program with prototype calls For The WO rl_d .

H debug

* prototype for retrieving an object description
»

CA) d RtvObjD pr extpgm(*QUSROBJD ')
d ReturnArea 1024 Options{*varsize)
Y d RtnLen 107 0 const
d Format 8 const
d ObjFilLib 20 const
d ObjType 10 const I
d ErrRtn 256

* API error data structure

B)d Qusec DS

d Qusbprv 107 0 InziZsize(RQusec))

d Qusbavl 104 @ Inz(D) l
d Qusei 7
d Quserved 1
d QusMsgbata 240

* API copy sources

* API structure for retrieving object description API
/copy Q5YSINC/QRPGLESRC,QUSROBJD

* APl parameter fields

d alnLib s 10 .
Because Time
c *Entry PList 2
: 1S Money—
c Exsr Init
n r 4
c Exsr Exit :[Sn t It T'[me
e You called?
€ Init Begsr
| ‘D Let Fax*Star® help you process critical :
< Reset qusec documents efficiently, reduce fax time
c callp RtvObjD(Qusdd100 : %len(Qusd@10@) : f
['0BJDO1BO : alnLib + 'QSYS' : 'ALIB' : by 8-10 minutes per fax and eliminate
< Gusec) the need for expensive forms, fax
% 3 A machines and postage. Just 50 faxes a
¢ Exsr *Pssr day equals a return of your investment
Endif
“ R in 60 days.
c Endsr

+ Fax or email spool files

* d !
T S * Integrate with Lotus Notes

c Exit Begsr
© Eval *inlr = *on + World class Tech Support
c Return
* Fax any Windows document
c Endsr

* Fax from AS/400, Unix,
RS6000, NT, Novell etc.

* error routine
&

o *Pssr Begsr
Duamy
> TR e Give us a call: 800.327.9859
i Endsy LA or visit our web site: Www.faxstar.com
| . ; Spz These are just a few reasons
\ program doesn’t %m?dle the error, it the |nfurn.‘_|atmn is held as a data struc- why FAX*STAR has become 1
will crash, too. It’s far better to pass ture. As Figure 2 clearly shows, a data |

The #1 + Open Systems

the parameter and look at the returned structure is constructed as follows:
Fax Server!

results so we can decide what to do.
Figure 1 at A is a copy member because ~ ® QUSEC is the name of the data

wiwwiSeriesNetwork.com DECEMBER 2003 iSERIES NEWS 37

II"IAGING
~ SOLUTION

Release Powerful »
6-0 Feature Rich »
Affordable «

es or AS/400 based imaging system, RVI

tes all elements of imaging into one software
systemn. This instant access to your information means
customers receive better service from highly productive
employees.

- With CPU financing and no expensive add-ons, RVI
encourages expanded use of imaging from a pilot
program to an enterprise wide solution.

for the [BM iSeries or AS/400,

38 iSERIES NEWS DECEMBER 2003

B WORKING WITH APIs

structure.

* QUSBPRYV indicates the bytes pro-
vided. Tt tells the API how long the
data structure is. You typically specify
a length of at least 16 bytes (the field
can have values of 0, 8, or more). The
API also updates this field with the
number of bytes that can be returned
if the data structure is long enough.
(This is a four-byte binary field, not a
four-digit field, so if you define it in
RPG with digits, you need to specify
a value between five and nine.)

¢ QUSBAVL shows the bytes available.
Here, the API tells us how many bytes
of error information is returned. The
important point here is that if this
value is zero, no error exists. If it’s
greater than zero, the API tells us how
much information has been returned
(again, this is a four-byte binary field).

* QUSEI specifies the exception ID (mes-
sage ID). This is the message ID for
the type of error that caused the API
to fail (this is a seven-character field).

* QUSERVED is a single character
reserved field, which we don’t use.

* You can append to the data structure
a field (which you name) for addi-
tional information that the APl may
return (specifically, the substitution
data for the message ID). In Figure 2,
I've named this field QUSMSGDATA.
Whether or not you use it depends on
your application. For comparison
purposes, Figure 1 omits this field,
but Figure 2 includes it.

Ready for the Next Step

Now that you’ve seen how calling APIs
using PLIST and prototypes differs,
you're ready for the next step — building
the utility. In Part 2, we'll examine how
to employ a user space, fill it with data,
extract records, use other APIs to retrieve
data, and more. So stay runed! []

Paul Morris is a freelance senior analyst/
programmer in the UK. who provides program-
ming and systems support for the iSeries. You
can e-mail him at Paul@wssltd.demon.co.uk.

wwwiSeriesNetwork.com

